Skip to content
GitLab
  • Menu
Projects Groups Snippets
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • L laser_plane_scanner
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • Deployments
    • Deployments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Commits
  • Issue Boards
Collapse sidebar
  • Cmíral Jakub
  • laser_plane_scanner
  • Wiki
  • rotation_table

rotation_table · Changes

Page history
cmirajak created page: rotation_table authored Sep 19, 2016 by Cmíral Jakub's avatar Cmíral Jakub
Hide whitespace changes
Inline Side-by-side
rotation_table.md
View page @ 468ada0b
...@@ -44,11 +44,11 @@ Thus, we end up with: ...@@ -44,11 +44,11 @@ Thus, we end up with:
### Direction vector ### Direction vector
Next, we have to find a vector ![alt text](http://mathurl.com/jm7yc4a.png). We know that when we move it back to the origin with vector ![alt text](http://mathurl.com/jntzz6q.png). This vector must remind same. So we remain with equation: Next, we have to find the rotation vector ![alt text](http://mathurl.com/jm7yc4a.png). We know that, the vector parallel to rotation axis must satisfy:
![alt text](http://mathurl.com/zjeuyqv.png) ![alt text](http://mathurl.com/gnw5gey.png).
As we can see all eigenvectors of ![alt text](http://mathurl.com/5unln6.png) can satisfy this. We calculate them and select the one corresponding to the smallest eigenvalue. That mean the rotation vector is an eigenvector of the rotation matrix ![alt text](http://mathurl.com/5unln6.png). Furthermore, the eigenvalues of ![alt text](http://mathurl.com/5unln6.png) are complex conjugate numbers and one number ![alt text](http://mathurl.com/d33pygb.png). Thus, we use the eigenvector corresponding to ![alt text](http://mathurl.com/d33pygb.png) and call it the rotation vector ![alt text](http://mathurl.com/jm7yc4a.png).
### Translation vector ### Translation vector
......
Clone repository
  • estimate_laser_plane
  • find_camera_mtx
  • Home
  • laser_trace
  • new_base_coords
  • rotation_table
  • simple setup